skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Winkler, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We consider a class of macroscopic models for the spatio-temporal evolution of urban crime, as originally going back to Ref. 29 [M. B. Short, M. R. D’Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi and L. B. Chayes, A statistical model of criminal behavior, Math. Models Methods Appl. Sci. 18 (2008) 1249–1267]. The focus here is on the question of how far a certain porous medium enhancement in the random diffusion of criminal agents may exert visible relaxation effects. It is shown that sufficient regularity of the non-negative source terms in the system and a sufficiently strong nonlinear enhancement ensure that a corresponding Neumann-type initial–boundary value problem, posed in a smoothly bounded planar convex domain, admits locally bounded solutions for a wide class of arbitrary initial data. Furthermore, this solution is globally bounded under mild additional conditions on the source terms. These results are supplemented by numerical evidence which illustrates smoothing effects in solutions with sharply structured initial data in the presence of such porous medium-type diffusion and support the existence of singular structures in the linear diffusion case, which is the type of diffusion proposed in Ref. 29. 
    more » « less